Depremin Büyüklüğü

DEPREMİN BÜYÜKLÜĞÜ

DEPREMİN ŞİDDETİ: 

Depremin Büyüklüğü:

Depremin gücünü ölçmedeki ikinci yöntem, depremle ortaya çıkan enerji miktarının ölçülmesine dayanıyor. Bu yöntemde ölçülen asıl olarak şiddet değil "büyüklük" (yani "magnitüd"). Bunun için, sismogram üzerindeki titreşimlerin genliğinden yani dalganın kâğıt sismogram üzerindeki yüksekliğinden yararlanılır.

"Büyüklük" tanımı ilk olarak, 1935 yılında, Kaliforniya Teknoloji Enstitüsü'nden Charles F. Richter tarafından yapıldığı için bu ölçümde kullanılan ölçek Richter'in adıyla anılıyor. Richter, merkez üssünden 100 km uzaklıkta ve sert zemine yerleştirilmiş özel bir sismografla kaydedilmiş zemin hareketinin mikron cinsinden ölçülen maksimum genliğinin 10 tabanına göre logaritmasını bir depremin "büyüklüğü" olarak tanımladı. "Richter Ölçeği" bu standartı temel alıyor ve 0'dan 8,9'a kadar olan rakamlarla belirtiliyor. Ayrıca bu rakamlar kesirli değerler de alabiliyor. Rakamlar büyüdükçe depremin büyüklüğü de "logaritmik" olarak artar.

Şimdiye dek ölçülmüş en büyük değer ise 8,9. Bu ölçek kullanılarak yapılan ölçümlerde, büyüklüğü 9 ve üzerinde olan değerler, kayaların dayanıklılık sınırları nedeniyle mümkün görünmüyor.

Büyüklük ölçmek için, bugün değişik yöntemler kullanılıyor. Geniş bölgelerde kullanılabilen ölçekler için farklı sismik dalgalardan yararlanılıyor. Dolayısıyla tek bir deprem için bazen birkaç farklı büyüklük olabiliyor. Diğer önemli nokta da, 7'nin üzerindeki büyüklüklerde, sismograf ölçümlerinin kesin olmama eğilimi.

Richter ölçeğinin en önemli yanı logaritmik olması. Ölçek üzerinde iki ardışık tamsayı arasındaki fark, yer sarsıntısının genliğindeki 10 kat artmaya karşılık geliyor. Bir kaya, büyüklüğü 4 olan bir depremle 1 cm ileri-geri titreşiyorsa, aynı kaya, büyüklüğü 5 olan bir depremde 10 cm'lik titreşimler yapacak demektir. Yerin titreşimindeki bu 10 kat artışın enerji cinsinden karşılığı ise 31,5 katlık bir artış. Örneğin, 5 büyüklüğünde bir deprem 4 büyüklüğündeki bir depremden 31,5 kat daha fazla enerji açığa çıkarır. 6 büyüklüğündeki bir depremde ise 4 büyüklüğündeki depremden neredeyse 1000 kat (31,5x31,5) daha fazla enerji açığa çıkacak demektir.

Depremin gücünü ölçmekte büyüklük ölçümü için bir sismografa gereksinim duyulmakla birlikte, şiddet değerinden çok daha kullanışlı ve güvenilir bir yöntem. Dünya çapında yaygın bir standart sismograf ağı bulunuyor ve bunlar düzenli olarak ölçüm yapıyor. Büyüklük ölçümüyle tek bir deprem için tek bir büyüklük belirlenebilirken, şiddet değerlendirmesiyle tek bir deprem için yerel hasara göre farklı değerler elde edilebiliyor. Üstelik büyüklük ölçümü, şiddet değerlendirmesinin aksine Dünya üzerinde oluşan tüm depremleri kaydedebiliyor.


1. Büyüklük (Magnitüd) Nedir?

Deprem, yerkabuğunun gerilme etkisi sonuncu, belirli bir derinlikte kırılması olarak tanımlanabilir.

Depremin büyüklüğü  kırılan yüzeyin büyüklüğünü ve dolayısıyla ortaya çıkan enerjinin düzeyini belirten bir ölçüdür.

Örneğin M=2,0 büyüklüğünde bir deprem, yeryüzünün derinliklerinde yaklaşık bir futbol sahası büyüklüğünde bir kiriğin meydana geldiğini gösterir. Büyüklük bir birim artarsa, yani 3,0 büyüklüğünde bir deprem oluşmuş ise, yaklaşık 10 futbol sahasına eşit bir alanın kirtilmiş olduğu anlaşılır. 
Gerçekte, depremin büyüklüğü sadece kırılan yüzeyin alanı ile oranlı değildir. Büyüklüğü etkileyen iki etmen daha vardır: atim ve berklik (rijidite). Atim, kırılan yüzeyin iki tarafında kalan kayaçların birbirlerine göre bağıl olarak ne kadar yer değiştirdiğini belirtir. Berklik ise, kırılan kayaçların sertliğine bağlı bir parametredir. Ancak depremin meydana geldiği derinliklerde genelde Berklik değeri hemen hemen hep aynıdır ve sabit kabul edilebilir. Atim değerinin ise genelde kırılan yüzeyin büyüklüğüne hep orantılı olduğu gözlenmiştir. Bu nedenle, büyüklüğün bilinmesi için sadece kırılan alanın yüzölçümünün tahmin edilmesi yeterli sayılabilir.

Büyüklük nasıl ölçülür?

Depremi oluşturan kirik genelde yer kabuğunun derinliklerindedir, ancak büyük depremlerde yer yüzeyine kadar ulaşır ve bizim fay kırığı dediğimiz yüzey kırıklarını oluşturur. Bir deprem olduğunda, derinlerde oluşan kırığı doğrudan gözle görmek mümkün olmadığından, onun yüzölçümünü dolaylı olarak tahmin etmek zorunda kalırız. Bir başka deyişle deprem kırığını kendisini görmesek de, onun ortaya çıkardığı etkileri inceleyerek büyüklüğü hakkında bir fikir edinebiliriz.
Buna örnek olarak, birisinin bir havuza tas attığını, ancak bizim taşın büyüklüğünü bilmediğimizi kabul edelim. Taşın havuza düşerken çıkardığı sesi dinleyerek veya havuzda oluşan dalgalanmaların boyutuna bakarak taşın küçük mü, yoksa büyük bir taş mı olduğunu tahmin edebiliriz. Depremin büyüklüğünü kestirmek de tamamen buna benzer bir süreçtir. Deprem de, yerkabuğu içerisinde havuzdaki suya benzer şekilde dalgalanmalar oluşturur.
Yerkabuğunda oluşan dalgalanmaları ölçmek için sismometre dediğimiz aygıtlar kullanılır. Hangi yöntem kullanılırsa kullanılsın, büyüklük hesaplanırken, depremin merkezinin doğru bir şekilde belirlenmiş olması esastır. Havuza atılan taş örneğine dönecek olursak, su üzerinde oluşan dalgaların genliği, kaynak noktasından uzaklaştıkça yavaş yavaş azalır. Bu nedenle, dalgalanmaların genliğini yorumlarken onun ne kadar uzak bir mesafeden geliyor olduğunu bilmek şarttır. Göz önünde tutulması gereken önemli bir nokta, yerkabuğunun hiçbir zaman havuzun suyu gibi yalın bir yapıya sahip olmaması, katmanlar, kıvrımlar, vb. içeren çok karmaşık bir dokuya sahip olmasıdır. Bu nedenle depremle oluşan yerkabuğu dalgalanmaları yayıldığı yöne bağlı olarak çok farklı değişimlere uğrayabilir. Olası bu bozulmalar göz önüne alınarak, büyüklüğü belirlemek için çoğu zaman tek bir sismometrenin sonuçları ile yetinilmez. Depremi farklı yönlerden ve farklı uzaklıklardan izleyebilmiş birçok sismometre ölçümünün ortalaması alınarak daha güvenli bir sonuç elde edilir.

Neden birden fazla Deprem Büyüklüğü tanımı vardır?

Yukarıda değinildiği gibi depremin büyüklüğünü belirlemek dolaylı biçimde yapıldığı için pek de kolay değildir. Üstelik deprem büyüklüğünü belirlerken, tüm ölçek için tek bir yöntemin kullanılması maalesef mümkün değildir. Belirli bir yöntem belirli bir büyüklük aralığında ve belirli bir uzaklıktaki depremler için geçerliyken, daha büyük veya daha uzak depremler için daha farklı yöntemler kullanmak gerekir. 
Buna örnek olarak, depremin büyüklüğünü belirlemeyi bir insanın yaşını belirlemeye benzetebiliriz. Yirmi yaşından daha küçüklerin yaşını tahmin etmek için o kişinin boyuna bakmak yeterli sayılabilir. Ancak yirmi yaşının üzerindekilerde boy fazla değişmeyeceğine göre, yaşı anlamak için daha farklı bir özelliğe, mesela saçların kırlaşmasına veya ciltte oluşan kırışıklıklara bakarak bir tahmin yapmak zorunda kalırız. Benzer şekilde, deprem büyüklüğünü belirlerken de, bulunduğumuz uzaklığa ve depremin büyüklüğüne göre farklı farklı yöntemlere başvurmak zorunda kalırız. Hatta bu farklı yöntemleri ayni depreme uyguladığı takdirde, farklı değerler elde etme olasılığı da vardır. Ancak en güvenli olanı, o büyüklük ve uzaklık için en uygun olan yöntemin verdiği sonuçtur.

Büyüklüğü ölçmek için kaç tane yöntem vardır? Bunlar nelerdir?

Süreye Bağlı Büyüklük (Md)
Daha büyük bir depremin, sismometre üzerinde daha uzun bir süre için salınımlara yol açacağı ilkesinden hareket edilir. Depremin, sismometre üzerinde ne kadar uzun süreli bir titreşim oluşturduğu ölçülür ve deprem merkezinin uzaklığı ile ölçeklenir. Bu yöntem küçük (M<5,0) ve yakın (Uzaklık<300 km) depremeler için kullanılır.

Yerel (Lokal) Büyüklük (Ml)
Bu yöntem 1935'da Richter tarafından depremleri ölçmek için önerilen ilk yöntemdir. Bu yöntem, havuza atılan tas örneğine dönecek olursak, taşın suya çarparken oluşturduğu ses dalgalarının suyun içerisine yerleştirilmiş bir mikrofon ile dinlenmesine benzetilebilir. Ses kaydında oluşan en yüksek genlik değeri, uzaklık ile ölçeklenerek taşın büyüklüğü hakkında bilgi verecektir. Depremin büyüklüğünü kestirirken de ayni ilke uygulanır. Bu yöntem de görece küçük (büyüklüğü 6,0’dan az) ve yakın (uzaklığı 700 km'den az) depremeler için kullanılır. Doğru değerlerin bulunması için sismometrelerin çok iyi kalibre edilmiş olması esastır.

Yüzey Dalgası Büyüklüğü (Ms)
Bu yöntem ilk iki yöntemin yetersiz kaldığı büyük depremleri (M>6,0) ölçmek için geliştirilmiştir. Havuz örneğine geri dönecek olursak, suyun yüzeyinde oluşan ve halkalar seklinde merkezden çevreye yayılan dalgaların en yüksek genliğinin ölçülmesi esasına dayanır. Bu tür dalgalar yeryüzünde kaynaktan çok uzak mesafelere yayılabilirler. Diğer yöntemlerin aksine bu yöntemin güvenilirliği uzak mesafeden yapılan ölçümlerde daha da artar.

Cisim Dalgası Büyüklüğü (Mb)
Bu yöntem Yüzey Dalgası yöntemine benzer, tek farkı yüzeyden yayılan dalgalar yerine derinliklerde ilerleyen dalgaların kullanılmasıdır. Havuz örneğine dönersek, taşın suya çarpması ile oluşan ses dalgaları (akustik dalga) suyun içerisinde uzak mesafelere yayılabilir. Bu ses dalgalarının bir mikrofon ile dinlenebilir ve ulaştığı en yüksek genlik taşın büyüklüğü konusunda bilgi verir. Deprem için de durum benzerdir. Ancak yerkabuğu içerisinde sadece ses dalgası değil, kesme dalgası adi verilen bir başka dalga türü de üretilir. Bu iki dalga türünün tümüne Cisim Dalgaları adi verilir. Sismometreler, mikrofondan farklı olarak her iki dalga türünü (Cisim Dalgaları) de kaydedebilir.

Moment Büyüklüğü (Mw)
Bu büyüklük türü, diğerlerine göre en güvenilir olanıdır. Bilim dünyasında, eğer bir deprem için moment büyüklüğü hesaplanabilmişse, diğer büyüklük türlerine gerek kalmadığı düşünülür. Belirleme açısından hepsinden çok daha karmaşıktır. Esas olarak depremin oluşumunun matematiksel bir modelinin yapılmasına karşılık gelir. Bir araştırıcının gerçekleştirebileceği bilimsel bir çalışma süreci ile hesaplanabilir ve bu yüzden hesaplamaların belirli bir zaman almaşı kaçınılmazdır. Otomatik olarak uygulamaya konulabilmesi ise zordur, dünyada sayılı birkaç gözlemevinde, sadece belirli bir büyüklüğün üzerindeki depremler için rutin olarak hesaplanmaktadır. Uygulamada, sadece belli bir büyüklüğün üzerindeki depremler için (M>4,0) Moment Büyüklüğü hesaplanabilir.

Google+ WhatsApp